The Aha! Moment: The Science Behind Creative Insight

(Editor’s note: This article is from a past issue of Brain World magazine. If you enjoy this article, please support us with a print or digital subscription!)

For most of us, it usually occurs at the most inopportune times; never when we’re searching for it. To Archimedes, it happened in the bathtub. Newton experienced it while wandering an apple orchard. Arthur Fry: church. Each encountered an epiphany, that powerful moment of spontaneous insight. Archimedes shouted Eureka! upon realizing how to calculate density and volume; to Newton came the law of universal gravity; to Arthur Fry, Post-it notes.

Behold the proverbial “aha!” moment — a key phenomenon that emerges in a range of situations, from offering a solution to a problem or a new interpretation of a situation to more simple feats such as understanding a joke or solving a crossword puzzle. There are many different representations we use colloquially to describe good ideas — sparks, flashes, light-bulb moments; inspirations and innovations; muses and visions. But what makes these moments so mystifying is that they usually materialize abruptly, without warning and seemingly out of thin air.

In today’s fast-paced industries, everyone is eager to foster these sparks of creativity, and it’s no wonder why: From these aha! moments come world-changing breakthroughs — from the discovery of penicillin and the invention of the microwave and safety glass to prescriptions for eyelash growth and the invention of Velcro and Post-its.

Laboratories and psychologists have attempted to study this phenomenon using behavioral methods for nearly a century, resulting merely in speculations as to where these ideas come from and how they form. Lately, though, with recent advancements and tools of cognitive neuroscience, researchers are able to explain the inner workings of the brain during moments of insight. By looking at images of the brain and recording brainwaves of individuals in experiments that generate insight, scientists have found that these sudden sparks are the result of a complex series of brain states. Findings also suggest that we require more neural processes operating at different time scales in these moments than we use when solving a problem analytically or methodically.

In a series of experiments, researchers Jon Kounios of Drexel University and Mark Beeman of Northwestern University used fMRI (functional magnetic resonance imaging) brain-image scanning and EEG (electroencephalography) sensors to document the neural activity of volunteers as they worked to solve word problems.

Participants were presented with three words (e.g., crab, pine, sauce), and were instructed to think of a single word that forms a familiar two-word phrase with all three (e.g., apple can join with crab, pine and sauce to form pineapple, crabapple and applesauce). As soon as participants thought of a solution word, they pressed a button to indicate whether the answer had come to them suddenly (through insight), or if they used a methodical hypothesis testing approach — in other words, a trial-and-error approach.

In the volunteers that experienced insight, Kounios and Beeman found a distinctive spark of high gamma activity that would spike one-third of a second before volunteers consciously arrived at an answer. Additionally, the flash of gamma waves stemmed from the brain’s right hemisphere — an area involved in handling associations and assembling parts of a problem.

Gamma activity indicates a constellation of neurons binding together for the first time in the brain to create a new neural network pathway. This is the creation of a new idea. Immediately following that gamma spike, the new idea pops into our consciousness, which we identify as the aha! moment.

In addition, Kounios and Beeman noted a burst of slower, alpha-band activity over the right visual cortex — an area of the brain that controls our sight — occurring immediately prior to the burst of gamma waves. This unexpected finding suggests that the brain is quieting the neurons in that area to reduce the amount of distraction and visual interference taken in — similar to everyday circumstances, the way we close our eyes or look away when concentrating on a question — which then allows insight to pop into awareness.

According to a study by Joydeep Bhattacharya at Goldsmiths College and Bhavin Sheth at the University of Houston, published in the Journal of Cognitive Neuroscience, the brain already knows whether a problem will be solved analytically or through sudden insight, and what’s more, the brain knows this an astonishing eight seconds beforehand.

In Bhattacharya’s experiment, volunteers were each given 30 seconds to read the instructions of a verbal puzzle, and another 60 to 90 seconds to solve it. If they were unable to solve it in the time allotted, a hint would appear. Some volunteers solved the puzzle, others did not; and the EEG predicted who would fall where.

By monitoring their brain waves, Bhattacharya noted an increase of high-frequency gamma waves—similar to the findings of Kounios and Beeman’s experiment — in the volunteers who solved the puzzle through sudden insight. The pattern of activity emanated from the right frontal cortex, a part of the brain responsible for executive functioning and shifting mental states. As previously mentioned, this activity was evident up to eight seconds before the participant realized he had found the solution.

Dr. Sheth thinks this could very well be the brain capturing transformational thought, or, more commonly, the aha! moment in action before the brain’s owner is consciously aware of it.

But here’s the thing: Between the spikes of gamma waves, the sparks of alpha waves and activity stirring in the cortex, the real question is how we can influence this tendency so that these creative breakthroughs can, well, break through more often.

Relax, unwind and free your mind from obstruction. We often assume that if we don’t notice our thoughts, they don’t exist, but this is actually when we may be thinking the most creatively. According to a study by Austrian psychologists Fink and Neubauer (as well as results from the former study by Kounios and Beeman), trying to force creative insight can inadvertently stifle your creativity. The more activated the brain is, the more likelihood for it to be distracted, as too much attention can overload our information-processing capabilities. Instead, people are most creative when they are experiencing lower levels of arousal in the cortical areas of the brain. It’s in states of daydreaming and drifting when we are most receptive to new ideas.

Additionally, an fMRI study published in the Journal of Cognitive Neuroscience reveals that people are more likely to solve problems with insight if they are in a positive mood. Moreover, the fMRI results showed that good mood was associated with greater activity in the anterior cingulate cortex (ACC) — an area that plays a role in a variety of functions, from regulating blood pressure and heart rate to higher cognitive functions such as decision-making, empathy, motivation, and attention. These findings suggest that positive mood alters activity in the ACC, biasing participants to engage in thinking and processing conducive to solving a problem by insight.

For Steven Johnson, author of “Where Good Ideas Come From,” the secret of generating the aha! moment lies in the notion of “thin air,” which he asserts is anything but. Rather, these moments are actually a relatively predictable outcome that arises from certain pre-conditions. First, Johnson writes, a good idea is essentially a “network of cells exploring the adjacent possible of connections that they can make in your mind.” Our brain houses roughly 100 billion neurons, with an average neuron connecting to a thousand other neurons scattered across the brain, amounting to 100 trillion distinct neuronal connections. However, since we progressively lose neurons after we hit adulthood, it’s key to keep our brain active to keep the network densely populated. More so, it’s the myriad of elaborate connections and assemblages these neurons form with each other that create ideas and epiphanies. Thus, to increase creative insight, we need to increase new network connections.

How? Well, essentially by acquiring knowledge and skills. This fits with the more established idea that learning and education thwart intellectual decline by building up the brain’s overall capacity for thought — also called “cognitive reserve.”

Second, to create new patterns and connections, which give rise to new ideas, you have to put yourself into innovative environments that foster insightful experiences. These experiences get tossed into our mental reservoir, where they sit and sort of just float around, until one day, they float into just the right alignment to click into a new idea. So, in other words, embrace curiosity. Do stuff. Go places. Collect experiences and gain knowledge. This will be what creates connections that bolster creative insights.

Johnson’s position on fostering good ideas is part of greater concepts called “networked
knowledge” and “combinatorial creativity.” This theory holds that nothing is entirely original; instead, everything builds on what came before. We cultivate ideas by adopting existing pieces of inspiration, knowledge and skill over the course of our lives and recombine them into new creations. In the brain, these new creations are the new neural pathways formed.

Albert Einstein attributed some of his greatest physics breakthroughs to his violin-playing, claiming it connected different parts of his brain in new ways. Renowned novelist Vladimir Nabokov qualified his obsession and knowledge of butterflies to his successful prose. Even Pablo Picasso, who once agreed to quickly sketch a portrait for a woman in the park, claimed that it didn’t take the seemingly few minutes to draw the portrait; it took him his whole life.

And so it comes to pass that these sudden insights, as florid as they seem, are actually the accumulation of certain variables — experiences that form networks, brain chemistry and neuronal connections — and yet, they can be influenced by multiple processes. Though we may not see the aha! moment coming, our brain certainly does.

(Editor’s note: This article is from a past issue of Brain World magazine. If you enjoy this article, please support us with a print or digital subscription!)



  1. I photograph nature, process the art, and write among a nature surround. I believe this relaxed atmosphere helps the creative process. In fact, I find my best is at night when outside writing under the stars.

    Ergonomically, one needs a distance to look up and refocus rather than at a desk with a wall in front of them.

    Time of quiet and calm exercises:
    One need only train the brain to think of opposites and “rewrite” a thought this way.

    This not only offers creativity to writing but then reaches over into other areas of my work.
    Therefore, I often use exercises of pushing beyond spell check. This can hinder creativity in writing which may hinder creativity overall within the thought of “too much” auto-information via online and other media.

    I push words together, see new words, pull them apart, and see how they sound out similarly. This is incredibly helpful for creative writing, and as I said, will flex the brain toward other creative endeavors.

6 Trackbacks / Pingbacks

  1. Learning Creatively: How You Can Train Yourself to Think Differently - Online College Courses
  2. Make Inspiration a Habit, Not a Moment. | Radically Human
  3. Laugh Your Way through Writer’s Block | Bane of Your Resistance
  4. On Distractions and Pie - Screen Ethics.
  5. 5 Tips for Creative UX - UI UX Training
  6. Cuddling and Creativity – Holding Space Blog

Leave a Reply

Your email address will not be published.